Future Improvements to Leak Rate Analyses

Engineering Mechanics Corporation of Columbus

Presented by David L. Rudland

Prepared by
David Rudland Elizabeth Kurth, Gery Wilkowski and Paul Scott

Workshop on LBB in PWSCC Systems

January 9-11 2008

Hilton Washington DC/Rockville, Executive Meeting Center

drudland@emc-sq.com

NRC Leak-Rate Analysis Software

- SQUIRT, which stands for Seepage Quantification of Upsets in Reactor Tubes, was developed as part of the First International Piping Integrity Research Group (IPIRG) program.
- Several versions were developed in IPIRG program, all in DOS environment
 - ◆ Uses the basic Henry-Fauske model for two-phase flow
 - Benchmarked against available experimental data
- Updated in NRC LB-LOCA program
 - Windows environment User friendly
 - Effects of WRS on COD predictions
 - Incorporation of PWSCC crack morphology parameters
 - ◆ Incorporation of COD dependent crack morphology model
 - All liquid and all steam models
 - Benchmarking against other leak rate codes (PICEP and LEAK-RATE)
 - Validation with recent leak-rate experiments (Ontario Hydro and Japanese)

Upcoming Improvements to SQUIRT

- SQUIRT will be modified in two ongoing NRC programs
- MERIT <u>Maximizing Enhancements in Risk Informed</u>
 <u>Technology International group program (US-NRC, Korea, Canada, UK, Sweden, EPRI)
 </u>
 - Objective #1 Continued development of a probabilistic LOCA code and standardized procedures for assessment (PRO-LOCA, SQUIRT, Cracked pipe databases, material property databases)
 - Objective #2 Assessment of weld residual stresses and their impact on stress corrosion cracking.
- Component Integrity
 - Further investigate component integrity issues for nuclear power safety. Issues include;
 - Upper head penetration J-weld flaw evaluation
 - Complex crack behavior
 - Piping PFM and leak-rate improvements
 - DM weld/overlay assessment
 - Plastic piping issues

Scheduled Upgrades in Leak-Rate Analyses as Part of MERIT Program

- Ongoing upgrades to SQUIRT Code cleanup (eliminate unused features in code)
 - Incorporate air fatigue crack morphology parameters
 - ◆ Address convergence issues in SQUIRT4 (calculation of crack size given leak rate) module
 - Update effect of WRS on COD
 - ◆ Added appropriate notes and warning messages
 - Beta testing
- Develop database of leak-rate experiments (motif of CIRCUMCK and AXIAL_CK pipe fracture experiment databases) for validation/verification
- Add transition flow model

Transition Flow Model

- SQUIRT currently has models for both single-phase flow (d/D $_h$ <0.5) and two-phase flow (d/D $_h$ >15); d ~ pipe wall thickness
- New model for transition flow regime (0.5 > d/D_h <15) to be developed; currently get warning message if operating in this regime

Scheduled Upgrades in Leak-Rate Analyses as Part of Component Integrity Program

- Update the current model for COD dependence on crack morphology parameters by using computational fluid dynamics
- Incorporate refined IGSCC/PWSCC crack morphology parameters
 - ◆ Measurements made from existing IGSCC/PWSCC micrographs
 - Willing to accept any available micrographs of PWSCC cracks to add to collection!!
- Resolve differences between KRAKFLO and SQUIRT
- Further benchmarking and validation

Current SQUIRT COD model

Crack Morphology Parameters

Surface roughness
$$\mu = \begin{cases} \mu_L & 0.0 < \frac{\delta}{\mu_G} < 0.1 \\ \mu_L + \frac{\mu_G - \mu_L}{9.9} \left(\frac{\delta}{\mu_G - 0.1} \right), & 0.1 < \frac{\delta}{\mu_G} < 10 \\ \mu_G & \frac{\delta}{\mu_G} > 10 \end{cases}$$

Number of turns
$$n_{t} = \begin{cases} n_{tL} & 0.0 < \frac{\delta}{\mu_{G}} < 0.1 \\ n_{tL} - \frac{n_{tL}}{11} \left(\frac{\delta}{\mu_{G}} - 0.1 \right), & 0.1 < \frac{\delta}{\mu_{G}} < 10 \\ 0.1 n_{tL} & \frac{\delta}{\mu_{G}} > 10 \end{cases}$$

Flow path length
$$\frac{L_{a}}{t} = \begin{cases} K_{G+L} & 0.0 < \frac{\delta}{\mu_{G}} < 0.1 \\ K_{G+L} - \frac{K_{G+L} - K_{G}}{9.9} \left(\frac{\delta}{\mu_{G}} - 0.1\right), \ 0.1 < \frac{\delta}{\mu_{G}} < 10 \\ K_{G} & \frac{\delta}{\mu_{G}} > 10 \end{cases}$$

CFD Work from Barrier Integrity Project

- An initial study using CFD with compressible flow was conducted with idealized geometry
- Results suggested initial model may need to be modified
- Friction coefficient is dependent on number of turns vs. straight duct segments over the length of the crack
- Effect of turns seems to be eliminated by δ/μ_G = 5 (10 was used in initial SQUIRT assumptions)
- Better normalizing parameter $\mu_G/(\delta \mu_G)$?

Improvement Plans – COD model

- Use CFD modeling to:
 - Investigate the effects of limiting assumptions
 - Examine the effect of offset and taper in idealized crack geometries
- Determine the most effective normalizing variable for crack morphology parameters
- Define more precisely the regime limits
 - Do all three morphology parameters need to have the same limits?
- Determine more precisely how the crack morphology parameters differ with crack type and shape
- Examining how number of turns calculated from service cracks, l.e., in the past nine 10-degree turns = one 90-degree turn, which is conservative.
 - Need CFD modeling of actual SCC flow path compared to simplified crack morphology assumptions used in SQUIRT

SQUIRT - KRAKFLO Differences

- From PVP2006-93767 AREVA suggests
 - KRAKFLO predicts a 37% increase for IGSCC morphology
 - IGSCC morphology generated from benchmarking of Battelle Phase II experiments (200

 μm with 24 - 45-deg turns/inch).
 - From EPRI report by Collier Battelle used 1.78 μ m with 6 45-deg turns in flow path for benchmark calculations.
 - Emc² has a copy of another EPRI report (Project 1570-2) where the IGSCC pipe was sent for UT sizing. An attempt at making morphology measurements will be made.
 - ◆ Emc² predicts a 89% increase for average IGSCC morphology
 - From measurement of micrographs (not including the Collier micrographs

SQUIRT – KRAKFLO Differences

- Use SQUIRT Code with COD-based improved model to benchmark against the Battelle Phase II data as well as to the available field data
- Benchmarking using consistent basis for determining crack-morphology parameters for IGSCC – Does it fall in the distribution of measured morphology parameters?
- ◆ Following successful benchmarking, a sensitivity study can then be performed and compared against AREVA factor of 1.37 or ~ 1.4 determined for the IGSCC morphology

Summary

- Through two separate programs, the capabilities of the SQUIRT code will be enhanced, and further benchmarked and validated.
- Updates to the transitional flow model, the crackmorphology parameters, convergence criteria, and COD-dependence model will occur.
- Further benchmarking and validation will occur.
- Discrepancies between KRAKFLO and SQUIRT will be reconciled.